Beiträge von Autor/in

Antennen sind unverzichtbare Komponenten für Mobilfunkgeräte und -netze. Auch wenn sie in Smartphones von außen kaum noch zu erkennen sind, haben sie entscheidenden Einfluss auf die Performance der mobilen Datenübertragung. Je nach Anwendungsbereich, ob im Endgerät oder an der Basisstation des Mobilfunknetzes, kommen unterschiedliche Antennentypen zum Einsatz. Wie eine Antenne prinzipiell funktioniert, welche verschiedenen Varianten es gibt und für was sie verwendet werden, erklärt Ihnen dieser Beitrag.

Mobilfunkantennen – grundsätzliche Funktionsweise und verschiedene Varianten

Antennen sind unverzichtbare Komponenten für Mobilfunkgeräte und -netze. Auch wenn sie in Smartphones von außen kaum noch zu erkennen sind, haben sie entscheidenden Einfluss auf die Performance der mobilen Datenübertragung. Je nach Anwendungsbereich, ob im Endgerät oder an der Basisstation des Mobilfunknetzes, kommen unterschiedliche Antennentypen zum Einsatz. Wie eine Antenne prinzipiell funktioniert, welche verschiedenen Varianten es gibt und für was sie verwendet werden, erklärt Ihnen dieser Beitrag.

SigFox

Die Vernetzung intelligenter Geräte wird sowohl im Privatbereich als auch in der Industrie immer wichtiger. Eine der hierfür wichtigsten Verbindungstechnologien ist SigFox, entwickelt vom gleichnamigen Telekommunikationsunternehmen. Genau wie LoRaWAN nutzt auch SigFox das unlizensierte Frequenzspektrum. Die Technologie zeichnet sich durch eine besonders große Batterielaufzeit und geringe Installations- und Betriebskosten aus und wird beispielsweise in der Logistik zur Überwachung von Sendungen angewendet. Genauere Erläuterungen zu Funktionsweise, Anwendung, und Unterschieden zu anderen Übertragungstechniken finden Sie in diesem Artikel.

LoRaWAN – Low Power Wide Area Network

In den letzten beiden Blogbeiträgen haben wir uns mit den gängigen mobilfunkbasierten Übertragungstechniken für IoT-Anwendungen beschäftigt. Neben LTE Cat. M1 und NB IoT gibt es aber auch Technologien, die zur Datenübertragung das unlizensierte Frequenzspektrum nutzen. Der Hauptvorteil solcher Netzwerke liegt in dem Wegfallen von Lizenzgebühren und Verträgen mit Mobilfunkanbietern. Eine der gängigen Technologien, die sich das unlizensierte Frequenzspektrum zunutze macht, ist LoRaWAN. Erfahren Sie in diesem Artikel, wie diese Technologie funktioniert und warum sie sich als Netzwerk für IoT-Anwendungen eignet.

LTE NB IoT – Narrowband Internet of Things

, ,

Zur Vernetzung intelligenter Geräte ist die Nutzung von Mobilfunk-basierten Technologien weit verbreitet. Neben LTE Cat. M1 steht hier auch das Narrowband Internet of Things (NB IoT) zur Verfügung. Dieses ist für die Übertragung noch kleinerer Datenmengen konzipiert und weist eine höhere Latenzzeit als LTE Cat. M1 auf. Dadurch ist NB IoT zwar weniger gut geeignet für die Übertragung von zeitkritischen Daten, kann aber mit einer höheren Akkulaufzeit und geringeren Kosten punkten. Erfahren Sie in diesem Artikel wie die Mobilfunktechnologie funktioniert und bei welchen Anwendungen ihre Eigenschaften von Vorteil sind.

LTE Cat. M1 – Long Term Evolution for Machines

Weltweit sind bereits Milliarden intelligenter Geräte sowohl in der Industrie als auch im Privatbereich mit einem Sensornetzwerk verbunden. Das Internet of Things ist unverzichtbar geworden. Sogenannte Low Power Wide Area Networks unterstützen die Verbindung dieser intelligenten Geräte. LTE Cat. M1, auch eMTC genannt, ist ein solcher ergänzender Standard, der unter anderem durch eine besonders hohe Netzabdeckung punktet.

LTE vs. 5G (Teil 5): Die Benötigte Netzinfrastruktur

Als Besitzer eines modernen Smartphones treffen wir alle regelmäßig auf die Abkürzungen LTE, 4G und 5G. Im Rahmen dieser Serie erläuterten wir in den bisherigen Beiträgen die Bedeutungen, Charakteristika und Unterschiede der genannten Mobilfunkstandards. Abschließend widmen wir uns nun der benötigten Netzinfrastruktur und erläutern den Bedarfsunterschied an Basisstationen.

LTE vs. 5G (Teil 4): Reichweiten

Als Besitzer eines modernen Smartphones treffen wir alle regelmäßig auf die Abkürzungen LTE, 4G und 5G. Im Rahmen dieser Serie erläutern wir die Bedeutungen, Charakteristika und Unterschiede der genannten Mobilfunkstandards. Für den Nutzer machen sich neben der Übertragungsgeschwindigkeit auch bei der Reichweite Abweichungen von 5G zu dem bisherigen Standard LTE bemerkbar. In diesem Artikel erklären wir, wie diese Unterschiede zustande kommen und wie Reichweite und Geschwindigkeit zusammenhängen.

LTE vs. 5G (Teil 3): Datenübertragungsraten

Als Besitzer eines modernen Smartphones treffen wir alle regelmäßig auf die Abkürzungen LTE, 4G und 5G. Im Rahmen dieser Serie erläutern wir die Bedeutungen, Charakteristika und Unterschiede der genannten Mobilfunkstandards. Bereits im ersten Teil sind wir kurz auf die mit LTE und 5G erzielbaren Geschwindigkeiten eingegangen. Lesen Sie nun Genaueres über die sogenannte Datenübertragungsrate, die technischen Unterschiede zwischen den beiden Mobilfunkstandards, und die in Zukunft erzielbare Leistungssteigerung.

5G

LTE vs. 5G (Teil 2): Latenzzeiten

Als Besitzer eines modernen Smartphones treffen wir alle regelmäßig auf die Abkürzungen LTE, 4G und 5G. Im Rahmen dieser Serie erläutern wir die Bedeutungen, Charakteristika und Unterschiede der genannten Mobilfunkstandards. Der erste Teil unserer Serie befasste sich mit einer einleitenden Begriffsklärung und den Übertragungsgeschwindigkeiten und Frequenzen von 4G/LTE und 5G. Erfahren Sie in diesem zweiten Teil nun alles Wichtige über die sogenannten Latenzzeiten.

Menü